4-BIT BISTABLE LATCH

DESCRIPTION

The M74LS375P is a semiconductor integrated circuit containing 4 bistable latch circuits and is provided with outputs Q and \overline{Q} .

FEATURES

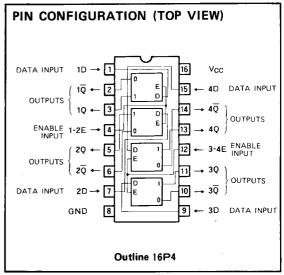
- Enable inputs common to two circuits each
- Q and Q outputs
- pin 8 GND, pin 16 V_{CC}
- Wide operating temperature range ($T_a = -20 \sim +75^{\circ}$ C)

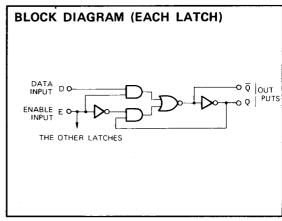
APPLICATION

General purpose, for use in industrial and consumer equipment.

FUNCTIONAL DESCRIPTION

This device contains 4 D-type latch circuits and is provided with enable inputs E common to 2 circuits each. When E is high, the information from the data input D appears in the outputs Q and \overline{Q} . When the D signal changes, the signal that appears in outputs Q and \overline{Q} also changes. When E changes from high to low, the status of D immediately before the change is latched. While E is low, the status of Q and \overline{Q} does not change even if D is changed.


This IC has the same functions and electrical characteristics as M74LS75P and differs only in its pin configuration.


FUNCTION TABLE (Note 1)

E	D	Q	Q
н .	н	Н	L
н	L	L	н
L	х	Q ₀	$\overline{\mathbb{Q}^0}$

Note 1 $Q^0, \overline{Q^0}$: Level of Q and \overline{Q} before the indicated steady-state input conditions were established.

X : Irrelevant

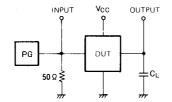
ABSOLUTE MAXIMUM RATINGS ($Ta = -20 \sim +75 \, \text{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.5~+7	V
VI	Input voltage		-0.5∼+15	V
Vo	Output voltage	High-level state	-0.5~V _{CC}	V
Topr	Operating free-air ambient temperature range		-20~+75	rc
Tstg	Storage temperature range		-65~ + 150	τ

RECOMMENDED OPERATING CONDITIONS ($Ta = -20 \sim +75 \, \text{°C}$, unless otherwise noted)

Symbol	Paramet	Min	Тур	Max	Unit	
Vcc	Supply voltage		4.75	5	5.25	٧
Гон	High-level output current	V _{OH} ≧2.7V	0		- 400	μА
	Low-level output current	V _{OL} ≤0.4V	0		4	mΑ
I OL		V _{OL} ≦0.5V	0		8	mΑ

ELECTRICAL CHARACTERISTICS ($Ta = -20 \sim +75 \, ^{\circ} C$, unless otherwise noted)


0	Parameter		Test condition	Test conditions		Limits		
Symbo!	Parameter		rest conditions		Min	Тур 🛪	Ma×	Unit
VIH	High-level input voltage				2			٧
VIL	Low-level input voltage						0.8	٧
Vic	Input clamp voltage		V _{CC} =4.75V, I _{IC} =-18	V _{CC} =4.75V, I _{IC} =-18mA			- 1.5	٧
VoH	High-level output voltage		$V_{CC} = 4.75V, V_1 = 0.8V$ $V_1 = 2V, I_{OH} = -400\mu A$		2.7	3.5		٧
Vol	Low-level output voltage		V _{CC} =4.75V	I _{OL} =4mA		0.25	0.4	V
			$V_1 = 0.8V, V_1 = 2V$	I _{OL} =8mA		0.35	0.5	V
	High-level input current D E	D	V _{CC} = 5.25V				20	μΑ
		É	V ₁ = 2.7V				80	μщ
hн		D	V _{CC} =5.25V				0.1	mΑ
		V _I = 10 V				0.4	IIIA	
I₁∟		D	V _{CC} =5.25V				0.4	mA
	Low-level input current E		V _I = 0.4V				-1.6	l mA
los	Short-circuit output current (No	ent (Note 2) V _{CC} =5.25V, V _O = 0 V		- 20		— 100	mA	
lcc	Supply current V _{CC} =5.25V (Note 3)		I	6.3	12	mΑ		

^{* :} All typical values are at VCC=5V, $\,Ta\!=\!25\,{}^\circ\!C$

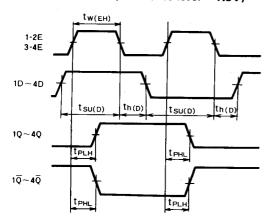
SWITCHING CHARACTERISTICS (VCC=5V, Ta=25°C, unless otherwise noted)

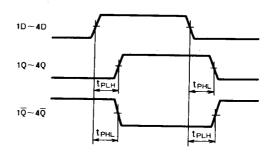
Symbol	Parameter	Tank and disiana		Limits		
		Test conditions	Min	Тур	Max	Unit
tpLH	Low-to-high-level, high-to-low-level output propagation	C _L = 15pF (Note 4)		12	27	ns
t _{PHL}	time, from input D to output Q Low-to-high-level, high-to-low-level output propagation time, from input D to output Q Low-to-high-level, high-to-low-level output propagation time, from input E to output Q Low-to-high-level, high-to-low-level output propagation time, from input E to output Q			8	17	ns
tpLH				10	20	ns
tpHL				6	15	ns
tpLH				13	27	ns
t _{PHL}				12	25	ns
tpLH				12	30	ns
t _{PHL}				6	15	ns

Note 4: Measurement circuit

- (1) The pulse generator (PG) has the following characteristics: PRR = 1MHz, t_r = 6ns, t_t = 6ns, t_w = 500ns, $V_P = 3V_{P,P}$, Z_Q = 50 Ω .
- (2) C_L includes probe and jig capacitance.

Note 2: All measurements should be done quickly and not more than one output should be shorted at a time.

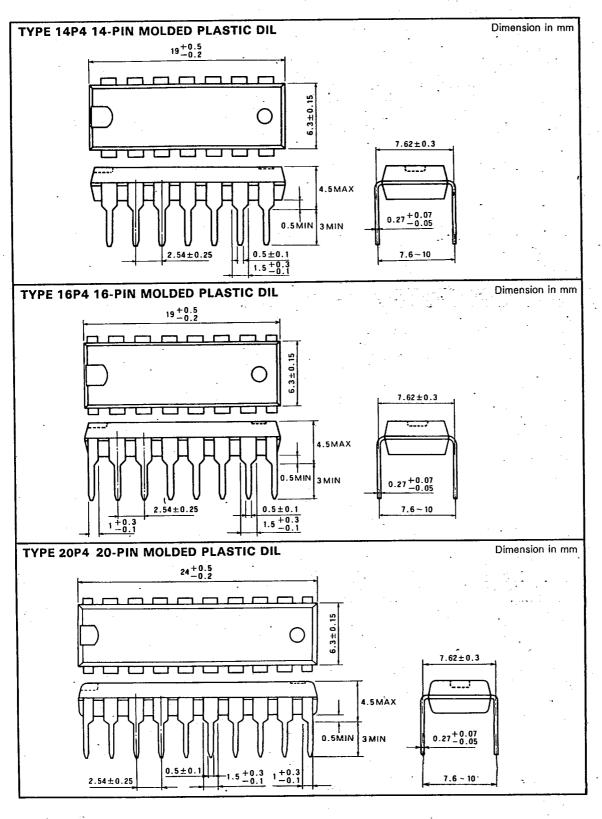

Note 3: I_{CC} is measured with all inputs at 0V.


4-BIT BISTABLE LATCH

TIMING REQUIREMENTS (Vcc=5V, Ta=25°C, unless otherwise noted)

Symbol Parameter	Test conditions		Limits			
		Min	Тур	Max	Unit	
tw(EH)	Enable input E high pulse width		20	7		ns
tsu(D)	Setup time 1D ~ 4D to E		20	12		ns
th(D)	Hold time 1D - 4D to E		8	5		ns

TIMING DIAGRAM (Reference level = 1.3V)



High-level 3-4E, 1-2E

MITSUBISHI LSTTLs **PACKAGE OUTLINES**

MITSUBISHI {DGTL LOGIC} D7E D 6249827 0013561 3

